
Issues with existing codebase:

+ It was tighly coupled. The methods has brute forced item names and conditions that are not f lexible at all.

+ The code needs refactoring if we try to add in a new type of item..

+ We have to manually write in the conditions if we are going to further implement a way to add in a type of

product.. (strategy pattern solves this and makes it easy to extend multiple ways of updating based on item..)

Item

<<ItemStrategy>>

Name -> String

Sell In -> Integer

Quatity -> Float

Units -> Kg/Pound/Litre/Litre

Price per unit -> Float

This is an abstract class which

contains reference to all stretagies

item : Item

update()

update_quality()

decrease_sell_in()

increase_quality()

limit_quality()

NormalietmStrategy

AgedBrieStrategy

implements

implements

+update()

+update()

Description and Rationale:

I have tried to impelement the strategy pattern because we are performing the same operation

but with different ways depending on the object/item.

How it works:

1- Gilded Rose class (acts as a factory class)

+ It contains a list of items. Using Items class creates items with f ields as mentioned
+ We instantiate concrete strategies in here. This class serves as a factory class
+ Then we use the method update() from the abstract class and pass in the required concrete
strategy.

NeverAgingStrategy
implements

+update()

	Guilded rose
	Page 1

	Guilded rose
	Page 1

