Issues with existing codebase:

+ It was tighly coupled. The methods has brute forced item names and conditions that are not flexible at all.
+ The code needs refactoring if we try to add in a new type of item..

+ We have to manually write in the conditions if we are going to further implement a way to add in a type of
product.. (strategy pattern solves this and makes it easy to extend multiple ways of updating based on item..)

Item

Name -> String

Sell In -> Integer

Quiatity -> Float

Units -> Kg/Pound/Litre/Litre
Price per unit -> Float

Description and Rationale:

| have tried to impelement the strategy pattern because we are performing the same operation
but with different ways depending on the object/item.

<<I|temStrategy>>

This is an abstract class which
contains reference to all stretagies

item : Item

A

update()
update_quality()
decrease_sell_in()
increase_quality()
limit_quality()

rHow it works:

1- Gilded Rose class (acts as a factory class)

+ It contains a list of items. Using Items class creates items with fields as mentioned

+ We instantiate concrete strategies in here. This class serves as a factory class

+ Then we use the method update() from the abstract class and pass in the required concrete
strategy.

implements
>< NormalietmStrategy

+update()

—_/

=

+update()

>(AgedBrieStrategy)
nplements

+update()

»(NeverAgingStrategy)
implements

	Guilded rose
	Page 1

	Guilded rose
	Page 1

