UML Class diagram for Gilded Rose Refactor using

State Pattern

GildedRose

- items: List <Item>
- factory : ItemStateFactory

+ init (items: List<Item>, factory=None)
+ update_quality() : void

A

Uses

IltemStateFactory

- registry : Map<String, BaseltemState>
- defaultState: BaseltemState

+ get_state(item: Item) : BaseltemState

Y

returns

BaseltemState

{static} MAX_QUALITY :int = 50 delegates

{static} MIN_QUALITY :int =0

ltem

A

+ update(item: Item) : void

Y

+ name : String
+ sell_in :int
+ quality :int
+ state : BaseltemState

+ _init_(name: String, sell_in: int, quality:int)
+ _repr_() : String

NormalltemState

+ update(item)

AgedBrieState

BackstagePassState

+ update(item)

+ update(item)

Description

SulfurasState

+ update(item)

» The main problem with the original code is that it has many nested if/else statements inside update_quality(), which makes the code hard to read,test and breaks when changes

are made.

« To solve this, | used the State pattern, where each item type (Normal, Aged Brie, Backstage Pass, Sulfuras) has its own class that handles its update logic.
* The Item object simply passes the update work to its current state.
 This keeps update_quality() simple and makes each items behavior easier to understand and modify.
» A possible downside is that this approach creates more classes, and it still depends on matching item name strings unless those are later replaced with constants or enums.




	UML class
	Page 1


