
GildedRose

- items: List <Item>
- factory : ItemStateFactory

+ init (items: List<Item>, factory=None)
+ update_quality() : void

ItemStateFactory

- registry : Map<String, BaseItemState>
- defaultState: BaseItemState

+ get_state(item: Item) : BaseItemState

 BaseItemState

{static} MAX_QUALITY : int = 50
{static} MIN_QUALITY : int = 0

+ update(item: Item) : void

Uses

returns

UML Class diagram for Gilded Rose Refactor using
State Pattern

Item

+ name : String
+ sell_in : int
+ quality : int

 + state : BaseItemState

+ _init_(name: String, sell_in: int, quality:int)
+ _repr_() : String

delegates

NormalItemState

+ update(item)

AgedBrieState

+ update(item)

BackstagePassState

+ update(item)

SulfurasState

+ update(item)

Description

- The main problem with the original code is that it has many nested if/else statements inside update_quality(), which makes the code hard to read,test and breaks when changes
are made.

- To solve this, I used the State pattern, where each item type (Normal, Aged Brie, Backstage Pass, Sulfuras) has its own class that handles its update logic.
- The Item object simply passes the update work to its current state.
- This keeps update_quality() simple and makes each items behavior easier to understand and modify.
- A possible downside is that this approach creates more classes, and it still depends on matching item name strings unless those are later replaced with constants or enums.

	UML class
	Page 1

